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Visualization of Time-varying Multiresolution Data Using Error-based
Temporal-spatial Reuse

Christof Nuber, Eric C. LaMar, Bernd Hamann, and Kenneth I. Joy

Abstract

In this paper, we report results on exploration of two-dimensional

(2D) time varying datasets. We extend the notion of multiresolution

spatial data approximation of static datasets to spatio-temporal ap-
proximation of time-varying datasets. Time-varying datasets typi-
cally do not change uniformly, i.e., some spatial sub-domains can
experience only little or no change for extended periods of time.
In these sub-domains, we show that approximation error bounds
can be met when using sub-domains from other time-steps effec-
tively. We generate a more general approximation scheme where
sub-domains may approximate congruent sub-domains from any
other time steps. While this incurs an O(T?) overhead, where T
is the total number of time-steps, we show significant reduction in
data transmission. We also discuss ideas for improvements to re-
duce overhead.

1 Introduction

Computer simulations of complex physical phenomena generate
extemely high-resolution time-varying datasets. It is desirable to
investigate these datasets interactively. Very few of these datasets
can be loaded into a computer’s main memory. Single time steps
are typically loaded. For each new time step, the entire time step
must be (re)loaded. For large datasets, even -a single time-step can
be too large. :

This problem can cause an unacceptable stall in applications
where real-time behavior is needed, distracting a user. This effect
can be particularly distracting in a virtual reality setting, where a
rendering budget must be satisfied to guarantee a “smooth* immer-
sive experience.

We avoid reloading of new time steps by amortizing over several
rendering cycles. First, in regions of the dataset where there is no
change between timesteps, it is not necessary to load that sub-region
for a new time-step - the “old” region can be reused without error.
Second, We allow a sub-region from one time-step to approximate
the same sub-region of a different time step.

This technique is intended to be complementary to compres-
sion, differential encoding, or other similar methods used to re-
duce/compress data size. While the technique discussed in this pa-
per is restricted to 2-d animations, all of the techniques and obser-
vations extend to 3-d time-varying data.

The paper is structured as follows: In section 2, we discuss re-
lated work. In section 3, we describe our new approach in detail,
describing the error tables used, the determination of the error for a
region, the management of the regions and the strategy used for se-
lecting regions for replacement. In section 4, we demonstrate how
our approach performs when compared to other strategies using two
different image sequences.

2 Related Work

Finkelstein et al. [1], were among the first to develop methods for
adaptive time-varying animation. They use a multiresolution image
technique and a quad-tree to decompose an image. Nodes represent

flat regions ( Le., store the average color of the children) and may

contain child pointers when higher resolution information is avail-

_able. The temporal aspect is encoded as a time-spanning binary

tree, where one image quad-tree is associated with each node of the
binary tree. The root node of the binary tree represents the aver-
aged image from all time steps ( i.e., a “motion-blurred” image).
The leaf nodes of the binary tree store the imagery from a single
time-step. Compression is achieved through first pruning quad-tree
nodes when all of the children of a parent node are equal to it within
some error tolerance §. Second, similar sub-trees from different
time-steps (frames) are merged into one ( i.e., the first instance is
saved, all others are deleted, and the pointers originally pointing to
these individual sub-trees all point to the first instance). There is no
notion of run-time error, only the error associated with the initial
construction of the time sequence. '

LaMar et al. [2], and Weiler et al. [3], described interactive
multiresolution volume visualization systems. The volume is com-
posed into an octree hierarchy of approximations, with each level
of the tree half the spatial resolution of the next level. The coarsest
approximation is stored at the root node, approximations in the in-
ternal nodes, and the original data at the root node. A user-defined
importance function, a data error function, and rendering budgets
guide the approximation. i

LaMar et al. [4] introduced a very fast method for computing
error on multiresolution hierarchies for volume rendering applica-
tions. The error is computed on the image volume produced by
applying a color and opacity transfer function. The key observation
is this one: Though the color space and data volume are large, for
data sets who’s voxels are bytes, there are only 2567 unique pairs of
error terms. The frequency of error terms in a node of the octree is
recorded in a table is also associated with that node. To evaluate the
error associated with a node, only the table must be evaluated. If a
volume contains 5123 ( 227 ) voxels, then the speed-up for comput-
ing error for a new transfer function on the root node of the approxi-
mation hierarchy over that 5122 volume, is 227 /2'® = 2!! = 2048.
Coupled with a lazy evaluation of the error ( i.e., error calculated
only when a node of the tree is visited), this results in extremely
fast error calculation.

Ma et al. [S] used voxel-level quantization, octree encoding, and
differential encoding for compression on voxel, spatial, and tempo-
ral dimensions, respectively. They claimed a compression of up to
90% for some data sets. Since voxel-level quantization is used, this
is a lossy technique and is not appropriate for all visualizations, and
certainly not appropriate for archival purposes. They used a tech-
nique called “temporal merging,” where two or more temporally-
consecutive sub-domains are merged. The partial image generated
from the first sub-domain of this series is cached and reused for
rendering later time-steps. This work has a limited notion of error
with respect to time: A sub-region is reloaded when there is any
change in data values, and reused if there is no change. Also, since
only imagery is cached, re-rendering the volume with a new trans-
fer function or from a new viewpoint requires loading the entire
approximation.

Shen et al. [6} introduced the TSP method which decomposes
space using an octree, and in each node of the octree, decomposes
time using a binary tree. The TSP mechanism can represent, to
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a limited degree, error in both spatial and temporal senses. Non-
leaf nodes store error terms, not approximations of data. Bricks
of original data are stored only at the leaf nodes. Spatial error is
used to determine when to approximate a sub-region of a volume
with a single color; that is, either a subregion is rendered at original
resolution or is approximated by a single color. Temporal error
is used to determine whether imagery generated at one time-step
can be used to approximate imagery of later time-steps. In both
cases, error is estimated using the variance of spatial and temporal
subregions. Low variance results in a constant color or reuse of an
image; high variance results in rendering original data. Once an
image is generated for a subregion, it is cached for possible reuse.

Elisworth et al. [7] extended the TSP algorithm to hardware
texture-based volume rendering. They utilized alternate error met-
rics, i.e., instead of examining data values they used, the color
values resulting from the transfer function are used.

Sutton and Hansen [8, 9] introduced T-BON , which is a
time-based extension of the BONO (Branch-On-Need-Octree) [10]
method. The BONO method is an octree decomposition of space,
where each node stores the extrema values (minimum and maxi-
mum) over the corresponding sub-domain. To find a surface for a
particular isovalue V, the method starts at the root node and visits
all nodes is extrema bracket the isovalue. The T-BON method pro-
duces a BONO for each time step. For each new time step, all prior
geometry is thrown away, and new geometry is produced, as in the
normal BONO method. The per-time-step BONO is accessed in a
demand-page fashion. Each node stores the extremal values (min-
imum and maximum) over the corresponding sub-domain. To find
a surface for a particular isovalue V/, the method starts at the root
node and visits all nodes whose extrema bracket the isovalue.

Shen introduced the Temporal Hierarchical Index Tree (THIT) in
[11] that constructs a bucketized span space table, where the mini-
mum and maximum values for a cell correspond to the cell’s mini-
mum and maximum over all time steps. Each table entry contains
a temporal subdividing binary tree. The root node records isosur-
faces that intersect the cell for all time steps, intermediate nodes
record isosurfaces that intersect the cell for intermediate time in-
tervals, and leaf nodes note isosurfaces that intersect the cell for
a single time step. The algorithm requires that the grid topology
remains fixed over time. ;

Our algorithm exploits the occurence of small changes and sim-
ilarities over time in spatial identical regions. Using error tables
that describe the difference of a region at a given resolution and
the same region at maximum resolution to other time steps, we can
determine the exact error introduced by this region. Only when a
region does not meet a user-defined error-criterium we need to up-
date this region. This approach allows us to resuse as many regions
as possible by exploiting the properties of a multiresolution dataset,
where the coarsest representation that meets the error-criterium can
be (re)used. Additionally, we are able to provide high-resolution
representations of regions with nearly no activity over a long pe-
riod of time.

3 Approach

Our approach is based on spatial binary subdivision of a time-
varying dataset into hierachical organized regions down to a maxi-
mum depth d..qz, together with error tables E# for each region de-
scribing the errors over time to determine per region the error intro-
duced with advancing time. During each render-cycle of a timestep
t, the visible regions are checked for their error between the visi-
ble representation R%(t,) and the correct representation Rima=(t)
where visible means that the region is used for rendering.
Depending on the error of a region it is either reused at timestep ¢
“as is” with the visible representation R%(t. ), replaced by the rep-
resentation for the current timestep R(t) with ¢ # ¢, or refined by
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Figure 1: Calculation of the error e (ty,t) of a region

replacing itself with its subregions Rf“ to reduce the error dis-
played.’ Using this error-driven approach we attempt to reduce the
number of subregions reloaded per frame by meeting a given error
bound where possible. .

In most simulations, changes within a region are small for small
timesteps when compared to larger timesteps. Using a maximum
error bound e, and exploiting the similarity of regions between
consecutive frames out of the visible regions, a set of subregions
is determined which must be replaced in order to.meet the error
requirements. Depending on the current resolution and the change
of values over time a region with minimal activity can be reused for
several steps before it doesn’t meet the given error-criteria anymore
(R4(t) = R(t + k), eh(t,t + k) < emaz fork > 0).

The advantage of this approach is that it is independent of the
dimension and the representation of the underlying dataset as long
as the representation provides multiple resolution and error tables.

3.1 Error Tables

The most accurate way of determining errors e?(t1,12) between
different temporal representations of a region R4 is to use error
lookup tables E§. For each region R an error table ES is gen-
erated which contains the error e%(¢1,t2) between every timestep
t, and timestep ¢z of the region at the current depth d in the hi-
erarchy to the comresponding region at the biggest depth dmaz.
Only ef*=(¢,t) = O can be guaranteed for leaf-regions R? with
d = dma- within the hierarchy.

3.2 Error for a Timestep

Each visible region R¢ manages the time ¢, it represents and
the error e}, (t.,t) it introduces. The error e%, (to,t) for a re-
gion at any given time ¢ is determined either by the value in the
error table when the region itself is displayed (e = E&(ty,t),
or by the average sum of the errors of its subregions R{*' by
eh(t) =1 -3, ex ' (to, t) (seeFig. 1).

3.3 Management of Regions

In order to prevent the re-evaluation of errors for all the regions
R within the hierarchy during every timestep, the evaluation is re-
stricted to error table lookups for visible regions RS and error re-
calculation of their parents only. Keeping a sorted list L of all vis-
ible regions R3 with an error e greater than the given error bound




€maz provides us with fast access to those regions that do not meet
. e .. 4 . .
the specified error condition requiring e“L(,-) > ei(j) fori < j.

- 3.4 Replacement Strategy

The selection of the regions to be replaced is based upon their cur-
rent visible error ef, and the maximum number of regions that can
be replaced during a single rendering step. As the replacement has
no effect on the visible regions (and their error), the errors of all
regions as well as the sorted list L must be updated only when time
advances to another timestep in the simulation.
Using the list L of regions sorted by their error replacement is
. done as follows: As long as there are replacable regions in L, we
remove the next replacable region R%. If the error e is smaller
than our error bound €z, we stop the process. If R has an actual
time stamp (¢, = t), then we replace R? with it’s children R;’H‘l
and add those children to L where e‘f{‘,’l > €maz and continue. If

"R? does not have a current time stamp we calculate the error of
the parent R%~* when we replace the current region with the actual
representation and keep the representation of the other children. If
the calculated parental error e% ' is smaller than the error found
in the error table E‘f{‘ we use the parent for the new time step
and remove the remaining children from L. If the error in the table
Eg(ty,t) of R is smaller than the current error e (ty, t) of R, we
replace the region with it’s actual representation.

This strategy allows us to replace as many tiles as possible dur-
ing the rendering-step(s) of one simulated timestep by reducing the
error with every image rendered until (1) either time advances to
another timestep or (2) we reach the given error bound for all tiles
visible.

When restricting the maximum traversal-depth of the hierarchy,
it is not always possible to reach the given error bound. The er-
rors are computed for the given resolution at the current depth to
the maximum depth in the tree. If we restrict the level d of refine-
ment for a region R? to a level higher than the base-level dmax,
the region cannot be refined although it may have an error greater
than zero. The minimal error possible for such a region, where
d < dmaz, is €% (t,ty) With €% (tv, ) > 0. Depending on the
value fOr €mag the term e%(ty, tv) < emaz Will not always be true.

4 Results

We have applied our approach to 2D image sequences. For error
analysis, we have used a simple mean-square-error between re-
gions, using the grayscale value of the image at different resolutions
for difference computations.

4.1 Standard Approaches used for Comparison
4.1.1 Replacement Based on a Fixed Resolution

The simplest approach is to replace each region of the dataset at
every timestep at a given resolution. This approach has a fixed and
well-known number of replacements and a well-known error for
every timestep, which is the error between the original resolution
and the selected multiresolution representation of the dataset. This
approach has no capability to adapt to a given error-bound, unless

we increase the resolution and thus the number of regions to be:

replaced. We compare our approach to this one with resolutions for
the highest and second-highest resolution.
4.1.2 Replacement Based on Adaptive Refinement

A more advanced approach is to use the error tables and reload the
regions from scratch for every timestep, starting at the lowest res-

timestep 50 timestep 99

Figure 2: Images from the Mona Lisa sequence

olution and refining only where the given error-bound requires re-
finement, i.e., adaptive refinement. This approach adapts to a given
error-bound and optimizes the number of regions to be replaced to
render the complete region. With the error-method used, regions
with only small sub-regions of change when compared to the re-
gion the error is calculated for (especially at lower resolutions) are
not refined.

4.2 Datasets Used

For evaluaﬁon—purpoées we use the following two datasets: an im-

age of the “Mona Lisa” disturbed continuously over 100 timesteps, -

and an image sequence of the Richtmyer-Meshkov instability sim-
ulation, see [12], with 136 images. Both datasets were subdivided
into 256 regions at the highest resolution. )

4.2.1 Monalisa

For simple evaluation, we used a snapshot of the Mona Lisa and
disturbed the image I with I’ (z,y) = I{z,y) - | (cos(2'~") -1 |,
where r is defined as

= 1 ifr>1
T )Vdx?+dy? r<1
with ~  dz=(z — width/2)/(width/2) and

dy = (y — height/2)/(height/2) .

The image sequence consists of 100 images, see Figure 2.
Changes within the image occur in the center and propagate to the
outer regions of the image in circles with the number of circles in-
creasing by one circle per frame.

422 Richtmyer-Meshkov Instability

The Richtmyer-Meshkov instability sequence is a cut through a 3D
simulation of the Richtmyer-Meshkov instability [12]. The simula-
tion describes the process of two fluids mixing after a shockwave
has passed through them. The images show a cross-section parallel
to the direction of the shockwave. The image sequence consists of .
136 images, see Figure 3. Although it seems that within this dataset
changes occur only within the middle of the picture there are also
significant changes to the direction of the shockwave originated.



timestep 1 timestep 37
timestep 075 timestep 125 .

Figure 3: Images from the Richtmyer-Meshkov sequence

Strategy

[ Temporal Reuse 14430 11517
Multiresolution Adaptive 17922 11686
Standard Level 3 6400 8704
Standard Level 4 25600 34816

Table 1: Comparison of number of all regions loaded over time

4.3 Examples

To evaluate our strategy we applied our adaptive approach, a time-
static adaptive refinement approach and a straight forward replace-
ment approach at the two highest resolutions to the image se-
quences. Table 1 shows the overall numbers of regions loaded for
each strategy. It can be seen that our approach loads the smallest
number of regions for the complete sequences. For a more detailed
comparison, three graphs per sequence are used showing the num-
ber of regions loaded per frame, the number of regions rendered per
frame, and the average pixel-error displayed per frame.

Figure 4 contains several snapshots of the Mona Lisa image se-
quence, with the regions replaced by our approach shown in yel-
low. Figure 6 shows the number of regions loaded, the number of
regions rendered and the rendered error per frame for the differ-
ent approaches. It can be seen that our approach loads always less
than the time-static adaptive refinement. The difference between
the two approaches in regions loaded per frame is an indication for
the numbers of region that did not change, the number of regions
rendered is nearly the same. The straight forward approach per-
forms very poorly at lower resolutions due to increasing detail in
the inner region of the image. It can be seen that our approach per-
forms nearly as well as the time-static adaptive refinement. Both
approaches show an average pixel-error of less than 1% (0,01).

Figure 5 contains several snapshots of the Richtmyer-Meshkov
instability sequence with the current subdivision generated by the
adaptive refinement (left column) as well as snapshots generated by
our approach with the regions replaced for this frame (marked in
yellow). Both approaches generate similar subdivisions, whereas
our approach reloads slightly less and renders more regions espe-
cially, where pixel-error is small.

As can be seen in Figure 7, both non-static approaches have

Mona Lisa | Richtmyer-Meshkov |

R m
timestep 20

P

timestep 99

Figure 4: Images: from the Mona Lisa sequence generated with our
approach; regions replaced shown in yellow

timestep 12

timestep 60

timestep 120

Figure 5: Images from the Richtmyer-Meshkov sequence (adap-
tive refinement left column, our approach right column; regions
changed shown in yellow)
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Figure 6: Number of regioris loaded, number of regions rendered
and rendered error per frame (Mona Lisa sequence)

nearly the same performance with respect to the number of re-
gions replaced. When comparing the snapshots from the sequence
in Figure 5 it can be seen that our approach provides more high-
resolution-regions than the static adaptive refinement method. Both
non-static approaches show a high variation of activity during the
first 50 timesteps. Although the outer regions of the sequence them-
selves seem to change. smoothly over time, there is a lot of activity
in the portion of the fluid where the shockwave originated. This is
caused by the reflection of the wave at the contact-surface of the
fluids. These changes are not visible to the eye due to the low con-
trast and brightness in the images but have an impact on the errors
calculated at lower resolutions, forcing both approaches to continu-
ously refine and recoarsen as the error between the different resolu-
tion changes. With the reflected shockwave traveling back, changes
over time are reduced in the section of the fluids where the shock-
wave travels, and the replacement of regions is restricted mostly to
the side where the shockwave has traveled.
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Figure 7: Number of regions loaded, number of regions rendered
and rendered error per frame (Richtmyer-Meshkov sequence)

4.4 Advantages

The advantage of our approach is that the number of regions re-
placed is remarkably reduced when compared to fixed-resolution-
methods. Compared to the time-static adaptive refinement strategy
our algorithm also replaces fewer regions per timestep without a
noticeable increase in the visible error, providing better refinement.

‘The application of the errors is independent of the underlying
data representation and the size of the dataset. It allows us to com-
pare datasets of different timesteps and decide which regions to re-
place, without accessing the dataset itself. The size of the error
tables depends only on the number of subdivisions and the number
of timesteps available. »

When compared to the static adaptive refinement our approach

- will perform well when applied to datasets where there are larger

regions with high detail, but no changes over time. The high detail
will force the static adaptive approach to refine and reload for every
timestep.



.5 Conclusions and Future Work

We have shown that our approach generates better results at a higher
performance than standard replacement strategies while meeting
given error-bounds and reducing the amount of data to be reloaded
per frame. New methods of error calculation and approximation
should be integrated in order to not only provide a mathematical
sound approximation but also a visually acceptable refinement or
coarsening suppressing regions to be refined where there is no vi-
sual change. In order to be able to compare two regions to deter-
mine the visual error without touching the actual data a small set of
characteristic numbers should be identified that allows us to quickly
determine the visual error between regions.

It is also necessary to reduce the complexity of the error tables,
which currently has a complexity of O(N?) causing the size of the
error tables to grow with an increasing number of timesteps.
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